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1.  INTRODUCTION

Outputs of General Circulation Models (GCMs) have
been widely used to estimate possible effects of global
climate change on agriculture by using climate scenar-
ios generated as inputs in crop growth simulation mod-
els (Haskett et al. 2000, Osborne et al. 2000, Izaurralde
et al. 2003, Rosenberg et al. 2003). However, in general
their simulations of climate change are computed for
wide grids (e.g. 2 to 3° resolution). As a result, GCMs
are not directly suitable for local impact studies, since
local climate also depends on topographical features,
such as elevation or aspect, that are not included in
GCMs with such resolution. 

To fill this gap, several downscaling techniques have
been developed which can be clustered into 2 concep-
tually distinct approaches: nested modelling (such as
the Regional Circulation Model, RCM) and empirical
downscaling that uses GCM large-scale predictions to
develop regional climate change scenarios (Sánchez et
al. 2004).

In the first approach, the outputs of GCMs grid cells
are used to provide boundary conditions for other
models with higher resolution (50 × 50 km, approx.),
which better represent local topography and provide a
more realistic simulation of fine-scale weather fea-
tures. Recent studies have shown the capacity of RCMs
to reproduce fine-scale features of different regional
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climates (Hulme et al. 2002). These, however, still
exhibit systematic errors due to imperfect representa-
tion of even smaller-scale features. 

Empirical downscaling approaches are generally
based on the assumption that GCMs are reliable predic-
tors of both large-scale variables and atmospheric condi-
tions which are sufficiently far removed from the surface
of the earth. This approach does not require lengthy
computation times and is based on finding clear relation-
ships between large-scale atmospheric variables and lo-
cal climate. Among these atmospheric variables, many
recent studies have used large-scale circulation vari-
ables (e.g. geopotential height or sea level pressure) as
the only driving parameters in specifying a range of sur-
face variables including temperature (Chen & Chen
2003), precipitation (Bárdossy 1997) and wind speed
(Sailor et al. 2000). However, the assumption that surface
variables can be derived only from large-scale circula-
tion variables may not be realistic, because atmospheric
circulation may not be the only dominant agent in deter-
mining surface climate variables. In order to avoid po-
tential problems due to this uncertainty, many authors
included among the predictors additional variables such
as free atmospheric temperature or, equivalently thick-
ness and moisture (e.g. Widmann & Schär 1997, Huth
2001, 2002).

Recently, non-linear approaches have been devel-
oped (in particular, the artificial neural network, ANN)
and adopted as tools to downscale local and regional
climate variables from large-scale atmospheric circula-
tion variables (Crane & Hewitson 1998, Wilby et al.
1998, 1999, Trigo & Palutikof 1999, Cavazos 2000,
Sailor et al. 2000, Olsson et al. 2001). This approach
increased downscaling accuracy when compared to a
linear model (McGinnis 1994, Weichert & Bürger 1998,
Trigo & Palutikof 1999). A regression analysis is con-
strained by the need to adopt a linear relationship
between input and output variables, whilst the ANN
model can be trained to find the best relationship
between atmospheric and surface variables without
predefined constraints (Trigo & Palutikof 1999). In
particular, the multi-layer perceptron (MLP) neural
network has been applied to a wide variety of climato-
logical problems (Gardner & Dorling 1998, Trigo &
Palutikof 1999, Cannon & Whitfield 2002) due to the
extreme flexibility of the model (Hornik et al. 1989). 

The effect of spatial scaling of climate variables for
input in crop simulation models has been investigated
in many studies (Mearns et al. 1996, 2001, 2003, East-
erling et al. 2001, Adams et al. 2003, Carbone et al.
2003, Doherty et al. 2003, Tsvetsinskaya et al. 2003). In
particular, these studies focussed on analysing the
impact on mean crop yields, without considering the
role of spatial scale in detecting extreme events affect-
ing yield variability. During key developmental stages

of a crop, extreme climatic events may have a dramatic
impact on final production, even if weather conditions
are generally favourable for the rest of the growing
season.

Therefore, this work aimed to determine the perfor-
mance of a GCM (HadCM3), an RCM (HadRM3P) and
an ANN in reproducing daily maximum and minimum
temperature (Tmax and Tmin) at site scale (Florence,
Italy). Additionally, the work aimed to evaluate the dif-
ferences induced by these simulated temperatures on
the appearance of the main phenological stages of a
summer (i.e. sunflower) and a winter crop (i.e. durum
wheat), and in terms of frequency of extreme climatic
events during phenological stages of these crops (i.e.
number of events with Tmax and Tmin above and below
stressful thresholds).

2.  MATERIALS AND METHODS

2.1.  Climatic datasets

2.1.1.  Observed climate data

Tmax and Tmin recorded in Florence at the Ximeniano
weather station (11.25° E, 43.75° N, 80 m a.s.l.) for the
period 1951–1990 were used as ‘observed data’ for
comparison with simulated data. In particular, data
collected from 1951 to 1976 were used to find and test
the relationships with large-scale atmospheric vari-
ables (i.e. ANN), while data from 1977 to 1990, i.e. the
‘present period’, were used to analyse the perfor-
mances of GCM, RCM and ANN in reproducing the
daily temperature pattern. The quality (i.e. homogene-
ity) of the entire data set was checked in a previous
study (Kumar et al. 2005).

2.1.2.  NCEP-NCAR reanalysis data

Observed large-scale atmospheric variables for the
period 1951–1990 were obtained from the reanalysis of
NCEP-NCAR (National Centers for Environmental
Prediction—National Center for Atmospheric Re-
search) data. Daily mean of geo-potential height at 500
and 850 hPa (HGT500, HGT850), relative humidity
(RH), mean sea level pressure (MSLP) with a grid res-
olution of 2.5° × 2.5° were interpolated to match GCM
spatial resolution (2.5° Lat. × 3.75° Long.). The result-
ing time series of the grid cell nearest to Florence1
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1The most appropriate NCEP-NCAR, GCM and RCM grid
boxes were selected by carrying out a preliminary analysis
on the differences between observed and simulated data of
Tmax and Tmin (data not shown)
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(Fig. 1) were used as predictor variables to develop
and test the ANN model with observed Tmax and Tmin

data (1951–1976), and to validate the capability of
GCMs to reproduce large-scale variables and atmos-
pheric conditions (1977–1990).

2.1.3.  GCM and RCM data

The GCM and RCM adopted in this work were the
HadCM3 and HadRM3P, respectively, developed by
the Hadley Centre, UK. HadCM3 is a coupled atmos-
phere–ocean GCM described by Gordon et al. (2000)
and Pope et al. (2000). The atmospheric component of
HadCM3 has 19 levels with a horizontal resolution of
2.5° Lat. × 3.75° Long., while the oceanic component
has 20 levels with a horizontal resolution of 1.25° Lat. ×
1.25° Long. The model run was forced between 1860
and 1990, and included observed changes in green-
house gases and aerosols. From 1990 onwards, a
number of scenarios of future changes in greenhouse
gases and aerosols were used to drive the model run.

HadRM3P has a spatial resolution of 0.44° Lat. ×
0.44° Long. and is the result of a dynamical downscal-
ing. It takes boundary conditions from a coarser resolu-
tion global model and provides a higher spatial resolu-

tion of local topography and more realistic simulations
of fine-scale weather features. In particular, the out-
puts from HadCM3 experiments provide the boundary
conditions to drive a high resolution (~120 km) model
of the global atmosphere (HadAM3P). In turn, the out-
puts from this model provide the boundary conditions
to drive the HadRM3P. This double nesting approach is
performed to improve the accuracy of the simulated
climate. 

In order to simulate climate change, 2 emission sce-
narios (A2 and B2) were selected among those pro-
posed by the Special Report on Emission Scenarios
(SRES) (IPCC 2000) for their wide and representative
range of changes in temperature patterns.

Tmax and Tmin simulated from HadCM3 and
HadRM3P for the periods 1977–1990 and 2087–2100
were extracted for the respective grid cells closest to
Florence (Fig. 1). In particular, as mentioned above,
the HadCM3 data for the present climate were com-
pared with the NCEP-NCAR data to test the capability
of the GCM to reproduce large-scale variables and
atmospheric conditions. HadCM3, HadRM3P and
ANN data reproducing both present and future cli-
mate conditions were used as input for a crop growth
simulation model (CropSyst model) to identify the role
of temperature data in climate change impact studies.
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Fig. 1. Location of grid-cells used in this analysis. Dashed line: HadCM3 and NCEP-NCAR grid cells, solid line: HadRM3P grid
cell, fill circle: location of Ximeniano weather station, Florence. Morphology of the HadCM3 and HadRM3P grid cells is shown 

(elevation in m)
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2.2.  ANN model

The ANN approach can be viewed as a computer
system that is made up of several simple and highly
interconnected processing elements similar to the neu-
ron architecture of the human brain (McClelland et al.
1986). Problems which are not easily solvable using a
normal statistical approach can be solved a by neural
network. In particular, ANN can be used to solve prob-
lems where the inputs and the corresponding outputs
are known, but the relationships between those ele-
ments are not well understood (Bindi & Maselli 2001). 

2.2.1.  ANN structure and inputs

The ANN structure adopted is an MLP with a feed-
forward configuration. This structure, has been
demonstrated to solve climatic problems (Gardner &
Dorling 1998, Trigo & Palutikof 1999). The MLP consists
of a system of simple interconnected nodes or neurons
assembled in several different layers. Each node
calculates a linear combination of weighted inputs from
the links feeding into it. The summed value is trans-
formed using linear or non linear functions. The output
obtained is then passed as an input to other nodes of the
next layer. These calculations are repeated until the
output layer is reached. 

More specifically, an ANN-MLP structure with 3 lay-
ers and 20 nodes per layer was selected (Fig. 2). A non-
linear transfer function (log-sigmoid) was selected for

all nodes and layers and a back-prop-
agation algorithm (Rumelhart et al.
1986) was used for training the ANN.
The optimal number of hidden nodes
(over a range of 5 to 25 with a 5 node
step) and the proper learning rate and
momentum were determined through
sensitivity analyses.

Large-scale circulation indexes for
both the current day and the previous
day were used as ANN input nodes,
and observed Tmax and Tmin as ANN
output nodes. Accordingly, HGT 500,
MSLP and 850–500 hPa thickness
(THI) collected from the NCEP-NCAR
grid point nearest to Florence were
used as input nodes of the ANN model.
Moreover, since air temperature in
Florence has a strong annual cycle, the
day of the year (DOY) was also consid-
ered as an additional input node using
the expression modified from Régnière
& Bolstad (1994) to account for the
circularity of the calendar dates: 

Other climate parameters, such as cloudiness, solar
radiation and relative air humidity were also an-
alysed as possible ANN input nodes. Cloudiness and
solar radiation, however, were discarded because
they were poorly correlated with predictands (Tmax

and Tmin). Relative humidity was excluded from the
ANN inputs because it was not well reproduced by
GCM, and thus not feasible for climate change
assessments (Fig. 3).

Since the basic assumptions of the ANN model were
not verifiable under future climate scenarios, it was
assumed that the statistical relationships developed for
the present climate were also valid for future climate
scenarios (A2 and B2) (Trigo & Palutikof 1999).

2.2.2.  ANN testing and validation

The observed and the NCEP-NCAR data for the
period 1951–1976 were used as outputs and inputs of
the ANN model, respectively. The ANN model testing
was carried out using 3 procedures: (1) Simple testing
during the training period (ST), in which a random
sub-set of days (20% of total data set) was chosen for
testing the ANN; (2) Simple testing using a fixed
period (1972–1976) of the training dataset (SP); (3)
Cross validation (CV), in which each year, in turn, is
omitted and used to test the ANN (Michaelsen 1987). 
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Fig. 2. Structure of the artificial neural network. HGT 500: geo-potential height
at 500 hPa, THI: thickness 850–500 hPa geo-potential height, MSLP: mean sea 

level pressure, DOY: day of year
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Since the ANN model was applied for the climate
impact analyses on crop development by adopting the
GCM data as predictors, a validation of the perfor-
mance of ANN model in reproducing Tmax and Tmin

daily data was performed using the GCM data as pre-
dictors for the remaining period (1977–1990). 

2.3.  Cropping systems simulation model

The cropping systems simulation model (CropSyst) is
a multi-year, multi-crop, daily time-step crop growth
simulation model (Stockle et al. 2003). The model sim-
ulates the soil water budget, soil–plant nitrogen bud-
get, crop canopy and root growth, crop phenology, dry
matter production, yield, residue production and
decomposition, and erosion. In this study, the model
was used to simulate crop development. More specifi-
cally, in CropSyst the simulation of crop development
is mainly based on the thermal time required to attain
specific development stages. Thermal time is calcu-
lated as growing degree days (GDD, °C d–1) accumu-
lated throughout the growing season (from planting
until harvest). Average air temperature above a base
temperature and below a cutoff temperature is consid-
ered for GDD calculation. Moreover, the simulation of

crop development considers other environmental
aspects such as day length, low temperature require-
ments, i.e.‘vernalisation’2, and soil water content. 

Observed and simulated Tmax and Tmin of the 4 data-
sets (weather station, GCM, RCM and ANN data) were
used as input variables of CropSyst to simulate the
dates (day of the year, DOY) of the main developmen-
tal stages (sowing, emergence, anthesis, grain filling,
physiological maturation) in winter wheat and sun-
flower. 

A previous calibration of CropSyst crop develop-
mental parameters was performed using observed Tmax

and Tmin and development dates of wheat and sun-
flower collected for the study area by Narciso et al.
(1992) (Table 1). 

Wheat is an autumn-sown crop that requires cold
temperature in the early development stages to meet
the requirements of vernalization. In the Mediter-
ranean basin, there is only a short period over which
vernalization can take place and thus wheat is sown
close to this period (Harrison & Butterfield 1996). In our
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2Vernalisation is a process required for certain plant species
to enter the reproductive stage through exposure to low,
nonfreezing temperatures. Thermal time accumulation is
limited until vernalization requirements are met
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simulations, the sowing dates were matched when,
starting from November 1, mean temperature for 5
consecutive days was 7°C or lower. Sunflower is a
spring-sown crop requiring high radiation for a good
yield level, thus sowing dates are established to inter-
cept the maximum radiation during the growing sea-
son. In our simulations, this time was matched when,
starting from March 15, mean temperature for 5 con-
secutive days was 13°C or higher.

The frequency of extreme climatic events during the
sensitive development stages of a crop was monitored
for present and future scenarios. For each stage, ex-
treme events were defined as those days where daily
Tmax and Tmin exceeded a temperature threshold in an
interval of ±3 d around the dates coinciding with im-
portant development stages (Table 2). In other words,
for each developmental stage the number of events
when Tmin was below the minimum threshold (hereafter
given as EE < Tmin) and when Tmax was above the maxi-
mum threshold (hereafter given as EE > Tmax) were
calculated. Tmax and Tmin thresholds for each phase
were defined as those temperatures below and above
which the crop experienced unacceptable growing
conditions (Narciso el al. 1992, Porter & Gawith 1999).

2.4.  Statistical analyses

The evaluation of the accuracy of the ANN model in
simulating Tmax and Tmin during the testing phase was
performed by calculating: (1) root mean square error

(RMSE); (2) mean absolute error (MAE) and (3) coeffi-
cient of determination (R2). The ability to reproduce
climate (Tmax and Tmin) and crop (development phase)
parameters through GCM, RCM and ANN models was
determined as follows: (1) performing ANOVA statisti-
cal analyses and (2) reproducing the distribution of the
observed and simulated temperatures by means of a
comparison of the percentiles of the cumulated empir-
ical distribution function (quantile-quantile [qq] plots).

3.  RESULTS AND DISCUSSION

3.1.  Climate data analyses

3.1.1.  ANN performance

The testing analysis showed a high level of corre-
spondence between observed and simulated data
(Table 3), indicating the robustness of our procedure in
generating temperature data. In particular, the deter-
mination coefficients were always >0.91 whereas the
MAE and RMSE were <1.7 and <2.1°C, respectively.
Moreover, the analysis of the relative importance of
each ANN input showed that large-scale circulation
indexes such as HGT550 and MSLP had the highest
relevance in determining the ANN outputs with a rel-
ative importance of 45 and 25%, respectively. In con-
trast, the other 2 selected predictors (THI and DOY)
had lower relative importance (20 and 10%).
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Phase Wheat Sunflower
Tmin Tmax Tmin Tmax

Sowing 0 – 5 –
Emergence 0 – 5 –
Anthesis 10 32 15 37
Grain filling – 32 – 37

Table 2. Triticum aestivum and Helianthus annuus. Thresh-
olds defining extreme events for winter wheat and sunflower 

according to their development stages

Tmax Tmin

R2 MAE RMSE R2 MAE RMSE

ST 0.93 1.67 2.10 0.87 1.78 2.2
SP 0.93 1.55 1.98 0.89 1.68 2.0
CV 0.91 1.59 2.00 0.89 1.72 2.1

Table 3. Statistical analysis of the performances of ANN in
reproducing temperature data. R2: coefficient of determina-
tion; MAE: mean absolute error; RMSE: root mean square
error; ST: simple validation during training; SP: simple valida-

tion using a period of the dataset; CV: cross validation

Parameters Wheat Sunflower

Starting simulation (DOY) 305 74
Conditions for sowing time <7 >13
(T mean for 5 dd) (°C)

Base temperature (°C) 10 10
Cutoff temperature (°C) 25 35
Sowing temperature (°C) 7 13
Emergence (GDD) 140 70
Anthesis (GDD) 370 500
Grain filling (GDD) 500 532
Maturity (GDD) 800 1300
Low temperature for optimal 3 ns
vernalisation (°C)

High temperature for optimal 10 ns
vernalisation (°C)

Days needed to complete vernalisation 50 ns

Table 1. Triticum aestivum and Helianthus annuus. List of the
parameters set for simulating wheat and sunflower develop-
ment. GDD: growing degree days accumulated from the sow-
ing date to each development stage; ns: parameters not set to 

simulate sunflower development; 5 dd: 5 consecutive days
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3.1.2.  Comparison between observed and 
simulated data

Present climate. The results indicate that both
HadCM3 (GCM) and HadRM3P (RCM) were not able
to correctly reproduce the Tmax and Tmin patterns of the
Florence weather station for most of the year (Fig. 4). In
particular, the seasonal means of Tmax and Tmin simu-
lated by GCM were largely lower than those observed
for all 4 seasons (Table 4). The differences were always
statistically significant (p < 0.05) and ranged from –5.7
to –7.3°C for Tmax and from –4.9 to –8.3°C for Tmin. The
patterns of Tmax and Tmin simulated by RCM were sim-
ilar to those simulated by GCM, but the differences
with the observed data were smaller and during sum-
mer they were not statistically significant (Table 4).
Both climate simulations, however, were not able to
reproduce the variability of Tmax and Tmin as demon-
strated by the comparison of the percentiles of the
cumulated empirical distribution function (Figs. 5 & 6).
In this case RCM outputs were also more precise than
the GCM outputs, but failed in reproducing the lower
and upper end of the distributions, with errors rather
difficult to correct because they were not systematic.

On the other hand, the simulated temperatures by
the ANN model confirmed the positive agreement
between observed and ANN downscaled data found in
the testing analysis (Fig. 4). The differences between
the seasonal values of downscaled and observed Tmax

and Tmin were not significant (Table 4). Also the com-
parison of the percentiles of the cumulated empirical
distribution function using qq plots demonstrated the
capability of the ANN model to reproduce the variabil-
ity of the observed Tmax and Tmin, in contrast with the
results reported for GCM and RCM (Figs. 5 & 6).

Future climate scenarios. The mean seasonal values
of Tmax and Tmin simulated by GCM, RCM and ANN for
A2 and B2 future climate scenarios are reported in
Table 5. As expected Tmax and Tmin obtained from
GCM, RCM and ANN for the period 2087–2100 were
higher than those obtained for the present climate. In
particular, the differences in Tmin between GCM and
ANN for both the scenarios were marked for all the
seasons, with maximum differences predicted for win-
ter and autumn (up to –7.4°C). In contrast, the differ-
ences were smaller for Tmax (up to –5.8°C), with very
close temperatures during summer (–1°C). The differ-
ences between RCM and ANN were rather small in
both future scenarios, especially for Tmax. However,
Tmin and Tmax simulated by GCM and RCM produced
results closer to ANN downscaled data than that under
the present climate. This is because GCM and RCM
predicted higher increases in Tmax and Tmin than those
predicted by ANN downscaled data. More specifically,
for the A2 scenario, ANN data showed an average
annual increase in Tmax and Tmin of 4.3 and 3°C respec-
tively, whereas respective Tmax and Tmin increases for
RCM were 5.5 and 5.3ºC, and for GCM were 7.2 and
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Fig. 4. Mean annual trend of observed (Obs) and simulated
(ANN, GCM and RCM) Tmin (A) and Tmax (B) at the Florence 

weather station

Season Scenario Tmax Tmin

Winter Obs 1977–90 11.5 ± 4.2 4.8 ± 3.9
ANN 1977–90 11.2 ± 3.6 4.4 ± 3.4
GCM 1977–90 5.3* ± 4.7 –2.6* ± 4.6
RCM 1977–90 9.6* ±3.7 –0.4* ±4.1

Spring Obs 1977–90 22.7 ± 5.3 12.3 ± 3.7
ANN 1977–90 22.1 ± 4.4 11.8 ± 3.4
GCM 1977–90 17.1* ± 4.6 7.4* ± 4.3
RCM 1977–90 20.6* ± 6.2 9.1* ± 4.8

Summer Obs 1977–90 29.5 ± 3.9 17.6 ± 2.8
ANN 1977–90 29.8 ± 3.9 17.9 ± 2.4
GCM 1977–90 23.8* ± 5.8 11.4* ± 4.3
RCM 1977–90 29.3 ± 5.9 16.0* ± 4.3

Fall Obs 1977–90 15.3 ± 5.4 8.4 ± 5
ANN 1977–90 14.9 ± 4.8 7.9 ± 4.1
GCM 1977–90 8.1* ± 5.8 0.1* ± 5.4
RCM 1977–90 12.7* ± 5.4 4.0* ± 5.5

Table 4. Observed (Obs), GCM, RCM and ANN mean sea-
sonal temperature, ± SD. *p < 0.05
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4.6°C. The same trend was observed for the B2 scenar-
ios, even though changes in temperatures were lower
(Table 5). 

3.2. Crop impact analyses

3.2.1.  Present climate

The observed GCM, RCM and ANN data of Tmax

and Tmin for the period 1977–1990 were used as input
climate variables of the CropSyst model to simulate the
main crop development stages of sunflower and winter
wheat. According to previous results, the ANN down-
scaled temperature data allowed us to produce the
most precise estimates of the dates for the crop devel-
opmental stages (Tables 6 & 7). More specifically, the
mean errors in predicting the crop developmental
stages of both sunflower and wheat using the ANN
data were always within 8 d, whereas those calculated
using GCM were much wider ranging from 40 to 104 d
in sunflower and from 7 to 36 d in winter wheat. The
use of RCM data substantially improved the simulation
of crop development stages and the mean errors
ranged from +16 to +35 d in sunflower and from 0 to
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Season Scenario Tmax Tmin

Mean Increase Mean Increase

Winter ANN A2 13.8 ± 3.5 +2.6 7.2 ± 3.4 +2.9
GCM A2 9.8 ± 4.9 +4.5 1.0 ± 4.5 +3.6
RCM A2 12.8 ± 3.5 +3.2 3.6 ± 4.2 +3.9
ANN B2 13.1 ± 3.6 +1.9 6.8 ± 3.5 +2.5
GCM B2 8.1 ± 5.1 +2.8 –0.3 ± 4.7 +2.3
RCM B2 12.2 ± 3.5 +2.7 3.0 ± 4.1 +3.4

Spring ANN A2 27.6 ± 5.7 +5.6 15.4 ± 3.7 +3.6
GCM A2 24.2 ± 7.2 +7.2 11.9 ± 5.1 +4.5
RCM A2 26.7±7.3 +6.2 14.2 ± 5.8 +5.1
ANN B2 26.1 ± 5.7 +4.1 14.4 ± 3.8 +2.6
GCM B2 21.7 ± 6.4 +4.7 10.6 ± 4.9 +3.2
RCM B2 25.0 ± 7.1 +4.4 12.8 ± 5.1 +3.7

Summer ANN A2 36.2 ± 2.9 +6.3 21.3 ± 1.4 +3.4
GCM A2 36.6 ± 6.2 +12.8 18.8 ± 4.5 +7.4
RCM A2 37.2 ± 5.6 +7.9 23.2 ± 4.1 +7.2
ANN B2 34.9 ± 3.2 +5.1 20.6 ± 1.6 +2.7
GCM B2 33.9 ± 6.5 +10 16.5 ± 4.2 +5.1
RCM B2 34.9 ± 5.9 +5.6 20.9 ± 4.6 +4.9

Fall ANN A2 18.1 ± 6.2 +3.3 10.2 ± 4.5 +2.4
GCM A2 12.6 ± 6.9 +4.5 3.7 ± 6.1 +3.6
RCM A2 17.5 ± 5.5 +4.8 9.0 ± 5.3 +5.0
ANN B2 17.2 ± 6 +2.4 9.8 ± 4.4 +2.0
GCM B2 11.4 ± 7.5 +3.4 2.4 ± 6.2 +2.2
RCM B2 16.5 ± 5.4 +3.8 7.6 ± 5.0 +3.5

Table 5. Seasonal mean and SD of Tmax and Tmin calculated
using ANN, GCM and RCM data for A2 and B2 scenarios
(2087–2100), and temperature increases with respect to

‘present period’ (1977–1990) of each model



Moriondo & Bindi: Simulated temperature and crop development in a changing climate

+26 d in wheat (Tables 5 & 6). The ability to simulate
developmental stages using the GCM and RCM data
was, however, different for the 2 crops. For example
RCM performed adequate simulations for winter
wheat (no significant differences were detected at
grain filling and maturation stages), whereas for sun-
flower all the dates of the development stages were
significantly different from those obtained using the
observed climate data. This may be related to the abil-
ity of GCM and RCM to better reproduce the observed
patterns of Tmax and Tmin during the winter and spring
seasons than in summer and fall seasons (Table 4), and
to better reproduce the temperature responses of the 2
crops. For sunflower, the lower temperatures simu-
lated by RCM resulted in a slower development of the
crop and then a delay in the main development stages.
In winter wheat, the lower temperatures simulated by

RCM and GCM had a lesser effect on the rate of the
crop development, because the lower availability of
daily thermal units during the development phase
between emergence and anthesis was compensated by
a higher availability of daily chill unit, i.e. vernalisation
requirement (see ‘CropSyst model’ in ‘Materials and
methods’). Thus, in GCM and RCM, vernalization
requirement was reached faster than using observed
and ANN data, allowing a higher rate of thermal unit
accumulation. This explains the earlier emergence and
anthesis exhibited when using RCM and GCM data in
comparison to that exhibited when using observed and
ANN data.

The effects of using different temperature datasets
(GCM, RCM and ANN) on the simulation of crop
developmental stages were investigated not only in
terms of mean differences in the development stage
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Sowing Emergence Anthesis Grain filling Maturation

Present period (1977–1990)
Obs 87.5 ± 7.5 103.4 ± 9.6 188.3 ± 7.2 192.1 ± 7.4 245.5 ± 11.7
ANN 93.6 ± 11.4 111.1 ± 10.2 192.4 ± 3.2 195.8 ± 3.2 247.6 ± 6.2
GCM 128.1 ± 7.7 147.2* ± 8.5 245.7* ± 18 259.1* ± 23.9 349.2* ± 13.2
RCM 113.4 ± 12.7 129.3* ± 12.9 204.3* ± 11.5 208.1* ± 12 280.2* ± 37.6

A2 scenario (2087–2100)
ANN 82.4 ± 5.2 96.6 ± 5.4 168.6 ± 2.6 171.6 ± 2.7 211.4 ± 2.6
GCM 101.2 ± 9.7 115.9 ± 9.3 184.3 ± 5.4 187.1 ± 5.6 222.6 ± 6.5
RCM 89.1 ± 7.7 104.3 ± 7.2 172.7 ± 5.3 175.5 ± 5.5 207.6 ± 4.6

B2 scenario (2087–2100)
ANN 83.4 ± 4.9 98.9 ± 5.5 173.8 ± 2.4 176.9 ± 2.3 218.8 ± 3.1
GCM 106.6 ± 12.6 122.4 ± 12.8 195.3 ± 7 198.3 ± 7.4 243.6 ± 12.8
RCM 93.1 ± 9.8 107.4 ± 9.9 180.1 ± 7.5 183.4 ± 7.3 219.6 ± 10.5

Table 6. Helianthus annuus. Day of year (DOY; mean ± SD) of simulated sunflower development stages computed using observed
(Obs), GCM, RCM and ANN temperature data for ‘present period’ (1977–1990) and future climate scenarios (A2, B2) for the 

period 2087–2100. *p ≤ 0.05

Sowing Emergence Anthesis Grain filling Maturation

Present period (1977–1990) 
Obs 323.2 ± 13.2 340 ± 13.8 135.1 ± 5.9 158.5 ± 5.9 183.2 ± 7.1
ANN 318.5 ± 11.7 334.8 ± 10.7 135.1 ± 5.7 162.6 ± 5.4 183.5 ± 4.8
GCM 300.5* ± 1.2 314.6* ± 2.2 98.2* ± 2.4 147.2* ± 8.1 190.2* ± 5.1
RCM 309.1* ± 9.4 324.6* ± 8.9 108.8* ± 7.4 156.7 ± 8.7 182.8 ± 9.5

A2 scenario (2087–2100)
ANN 338.5 ± 17.4 355.8 ± 15.1 130.8 ± 3.7 148.4 ± 2.9 164.7 ± 3.8
GCM 306.3 ± 9.1 321.1 ± 9 116.1 ± 8.9 147.5 ± 4.1 170.6 ± 5.1
RCM 333.2 ± 11.7 349.9 ± 10.9 129.1 ± 5.5 148.6 ± 5.3 164.2 ± 5.6

B2 scenario (2087–2100)
ANN 336.4 ± 21 353.4 ± 19.4 132.8 ± 4.9 152.8 ± 3.8 168.8 ± 3.6
GCM 303.6 ± 4.4 320.5 ± 5.6 115.5 ± 9.8 153.3 ± 7 177.5 ± 8.0
RCM 331.2 ± 16.8 347.5 ± 16.1 127.8 ± 8.6 151.8 ± 8.4 170.7 ± 7.6

Table 7. Triticum aestivum. Day of year (DOY; mean ± SD) of simulated winter wheat development stages computed using observed
(Obs), GCM, RCM and ANN temperature data for ‘present period’ (1977–1990) and future climate scenarios (A2, B2) for the

period 2087–2100. *p ≤ 0.05
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dates, but also in terms of ability to accurately re-
present incidences of extreme climatic events during
crop development. According to the selected thresh-
old for Tmax and Tmin extreme events reported in
Table 2, ANN downscaled temperature data allowed
the most precise reproduction of the frequency of
these extreme events in all the selected development
stages for both crops (Tables 8 & 9). Only in 1 case
was the observed data >10% higher than the simu-
lated data (EE > Tmax at grain filling for wheat). In
contrast, GCM and RCM datasets poorly reproduced
the frequency of climate extremes. For sun-
flower, GCM highly overestimated the num-
ber of EE < Tmin at maturation (81%), while
RCM overestimated the number of EE >
Tmax at anthesis and grain filling, and EE <
Tmin at sowing (Table 8). For wheat, GCM
largely overestimated the number of EE <
Tmin in all phenological stages. The same
patterns were observed for RCM data, even
if the differences were smaller (Table 9).

3.2.2.  Future climate scenarios

The general increase in temperature pre-
dicted by GCM, RCM and ANN models had
different effects on sunflower and wheat
development. In particular, sowing time of
sunflower was advanced, since the minimal
phenological threshold, i.e 13°C or higher
mean temperature for 5 d, was reached ear-
lier (20 d). The same was applicable for the

following developmental phases (i.e. emer-
gence, anthesis, grain filling and physiologi-
cal maturity), since their developmental
rates were driven only by the accumulation
of degree days. In contrast, for wheat the
higher temperatures caused a delay of
wheat sowing time, since the cool tempera-
ture required for sowing, i.e. 7°C or lower
mean temperature for 5 d, was attained later
(15 d). Moreover, the increase in winter
temperatures always had a lower effect on
the developmental rate up to anthesis, since
the time to complete the vernalization
requirement was longer. Thus, only the
developmental stages after anthesis (i.e.
grain filling and maturity stages) were accel-
erated by higher temperature.

On the basis of these crop behaviours, the
use of temperature data obtained from differ-
ent climate datasets (GCM, RCM and ANN)
directly affected the impact of climate
change on the dates of the main crop devel-

opmental stages and the incidence of extreme climatic
events on sensitive development stages. 

In particular, the simulated dates of the main crop
development stages obtained using the ANN data
were, on the whole, different for both scenarios and
crops from those obtained using the GCM data, whilst
the correspondence with those obtained using RCM
data were quite good (±7 d) (Tables 6 & 7). The same
pattern was obtained when comparing the incidences
of extreme climate events in these stages. In this case
the estimates obtained using RCM and ANN data were
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EE > Tmax EE < Tmin

Anthesis Grain filling Sowing Emergence Anthesis

Present period (1977–1990)
Obs 0.0 1.02 18.4 12.2 6.12
ANN 4.08 1.02 10.2 2.04 0.0
GCM 1.02 1.02 26.5 6.12 86.7
RCM 25.5 25.5 34.7 18.4 10.2
A2 scenario (2087–2100)
ANN 12.2 24.5 1.02 2.04 0.0
GCM 51.0 59.2 38.8 9.18 6.12
RCM 61.2 57.1 26.5 5.1 0.0
B2 scenario (2087–2100)
ANN 10.2 9.18 11.2 1.02 0.0
GCM 62.2 68.4 39.8 18.4 8.16
RCM 34.7 26.5 30.6 24.5 4.08

Table 8. Helianthus annuus. Extreme temperature events (EE > Tmax and
EE < Tmin respectively) at the sensitive development stages (±3 d) of the
sunflower, computed using observed (Obs), GCM, RCM and ANN cli-
matic data for ‘present period’ (1977–1990) and future climate scenarios
(A2, B2) for the period 2087–2100. Data are total number of days with 

extreme events / total number of days (%)

EE > Tmax EE < Tmin

Anthesis Grain filling Sowing Emergence Anthesis

Present period (1977–90)
Obs 7.7 17.6 13.2 15.9 15.4
ANN 0.0 3.3 4.4 19.8 6.6
GCM 0.0 0.0 58.2 70.3 97.8
RCM 0.0 2.2 16 40.7 96.7
A2 scenario (2087–2100)
ANN 40.7 30.8 6.6 12.1 0.0
GCM 8.8 14.3 42.9 58.2 48.4
RCM 30.8 42.9 20.9 48.4 13.2
B2 scenario (2087–2100)
ANN 27.5 28.6 1.1 41.8 1.0
GCM 0.0 3.3 37.4 56 64.8
RCM 27.5 28.6 17.6 39.6 25.3

Table 9. Triticum aestivum. Extreme temperature events (EE > Tmax and
EE < Tmin respectively) at the sensitive development stages (± 3 d) of the
winter wheat, computed using observed (Obs), GCM, RCM and ANN
climatic data for ‘present period’ (1977–1990) and future climate scenar-
ios (A2, B2) for the period 2087–2100. Data are total number of days with 

extreme events / total number of days (%)
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also rather similar, whereas those obtained using the
GCM data were still quite different (Tables 8 & 9).
However, even if the differences obtained from GCM,
RCM and ANN climate date sets between the dates of
the main developmental stages and between inci-
dences of extreme climate events in these stages  were
smaller in future scenarios than for the present climate,
the analysis of the relative changes (i.e. differences
between future and present CropSyst model outputs)
showed that the use of GCM and RCM data resulted in
climate change impacts that were different from those
obtained using ANN data. For example, the mean
reductions in the duration of the growing seasons in
sunflower were as follows: 25 d using ANN, 100 d
using GCM and 48 d using RCM. The changes in the
frequency of extreme events in relation to develop-
mental stages in wheat were substantially different
(+12% in ANN, –12% in GCM and –2% in RCM).

4.  CONCLUSIONS

With expected increases in climatic variability and
extreme events, there is a need to assess future
impacts, in particular on the year to year variability of
crop yield. One problem in relation to these needs is
the coarse resolution of the available tools (i.e. GCM).
The tools used to reproduce future climate conditions
failed to simulate climate variability in local and
regional weather. To fill this gap, 2 conceptually dis-
tinct approaches have been developed: nested model-
ling (such as RCM) and empirical downscaling that
uses large-scale predictions from GCMs to develop
regional climate change scenarios.

Given that this study was carried out using the cli-
mate data of 1 weather station only, wider testing may
be required for greater confidence in the findings. The
present study confirmed that, even if dynamic down-
scaling (i.e. RCM data) allowed us to increase the spa-
tial resolution of GCMs, the RCM datasets had prob-
lems in reproducing temperature patterns in an area
characterised by a complex morphology. The differ-
ence between the actual altitude of the weather station
(Ximeniano, Florence) and the grid point altitude
(–422.2 m) played an important role in the underesti-
mation of Tmax and Tmin by RCM. In contrast, a statisti-
cal downscaling approach with GCM large-scale vari-
ables as predictors (e.g. ANN model) allowed a good
simulation of temperature patterns (Tmax and Tmin). Fol-
lowing these results, the crop phenological stages and
the related climate extreme events were also better
reproduced using ANN climate data. 

Moreover, the use of HadCM3 and HadRM3P cli-
mate data in climate change impact assessments
resulted in higher changes in the length of develop-

ment phases and in the frequency of extreme climate
events during the most sensitive development stages
compared with those obtained using ANN climate
data. 

However, both the downscaling procedures proved
to have certain limitations for use in climate change
impact assessments. The dynamic downscaling ap-
proach (i.e. RCM) has to be used by applying the
change between present day and future simulated cli-
mate to the observed baseline climate (i.e. ‘delta
change technique’), because of its low capacity to
effectively reproduce present climate conditions. The
statistical downscaling approach (i.e. ANN) has to be
used when applying relationships developed from the
present day climate to future climate scenarios. Unfor-
tunately, the ‘delta change technique’ cannot be used
for evaluating the impact of climate change on climate
extremes (such as in this study), as the future variabil-
ity of climate parameters is expected to be the same as
that of the present climate. The relationship developed
from the present day climate in the statistical down-
scaling approach cannot be verified under different
climate forcing conditions.
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